|本期目录/Table of Contents|

[1]张笑,吴坚,曹清玮.基于直觉模糊的科技型小微企业信用评价[J].温州职业技术学院学报,2017,03:67-73.
 ZHANG Xiao,WU Jian,CAO Qingwei.Credit Risk Evaluation of Small and Medium Enterprises Based on Intuitionistic Fuzzy Sets[J].Journal of Wenzhou Vocational and Technical College,2017,03:67-73.
点击复制

基于直觉模糊的科技型小微企业信用评价(PDF)

《温州职业技术学院学报》[ISSN:1006-6977/CN:61-1281/TN]

期数:
2017年03期
页码:
67-73
栏目:
出版日期:
2017-06-20

文章信息/Info

Title:
Credit Risk Evaluation of Small and Medium Enterprises Based on Intuitionistic Fuzzy Sets
作者:
张笑吴坚曹清玮
浙江师范大学 经济与管理学院,浙江 金华 321004
Author(s):
ZHANG Xiao WU Jian CAO Qingwei
School of Economics and Management, Zhejiang Normal University, Jinhua, 321004, China
关键词:
科技型小微企业信用评价直觉模糊数层次分析法TOPSIS法
Keywords:
Technology-based SMEs Credit risk evaluation Intuitionistic fuzzy number Analytic hierarchy process TOPSIS method
分类号:
O159; F832.4
DOI:
10.13669/j.cnki.33-1276/z.2017.059
文献标识码:
A
摘要:
我国现行的信用评价体系不能准确地评估科技型小微企业的信用状况。为解决信用评价中的不确定 性和模糊性,利用直觉模糊数的多属性评价方法,构建综合信用评价指标体系;建立直觉模糊判断矩阵,利用定性与 定量相结合的层次分析法确定评价指标权重,并利用改进的TOPSIS法对方案进行排序。应用实例表明,基于直觉模 糊的科技型小微企业信用评价方法计算简便,评价结果精准科学,具有较好的实用价值。
Abstract:
China’s current credit evaluation system cannot accurately assess the credit status of SMEs. In order to solve the uncertainty and ambiguity in credit evaluation, the paper employs multi-attribute evaluation method based on intuitionistic fuzzy number to build a comprehensive credit evaluation index system, establishes valued intuitionistic fuzzy judgement matrix with a combination of both qualitative and quantitative methods to obtain subjective weight of attribute, and adopts improved TOPSIS solution for order preference. The application result shows that the calculation of multi-attribute evaluation method based on intuitionistic fuzzy number is simple, its assessment result is more accurate and scientific, and its application value is much better.

参考文献/References

-

备注/Memo

备注/Memo:
[收稿日期]2017-03-08
[作者简介]张 笑(1993—),女,江西鹰潭人,浙江师范大学经济与管理学院硕士研究生; 吴 坚(1977—),男,江苏无锡人,浙江师范大学经济与管理学院讲师,博士; 曹清玮(1982—),女,江苏无锡人,浙江师范大学经济与管理学院讲师,硕士.
更新日期/Last Update: 2017-10-10